Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

نویسندگان

  • Jichao Hu
  • Juntao Chang
  • Wen Bao
چکیده

A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spray Flame and Exhaust Jet Characteristics of a Pressurized Swirl Combustor

Title of Document: SPRAY FLAME AND EXHAUST JET CHARACTERISTICS OF A PRESSURIZED SWIRL COMBUSTOR Martin Brendan Linck, Doctor of Philosophy, 2006 Directed By: Professor Ashwani K. Gupta Department of Mechanical Engineering This work describes an investigation of swirl-stabilized flames, created in a combustor featuring co-annular swirling airflows, under unenclosed, enclosed, and submerged condi...

متن کامل

Large eddy simulation of propane combustion in a planar trapped vortex combustor

Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...

متن کامل

Unified Analysis of Internal Flowfield in an Integrated Rocket Ramjet Engine. I: Transition from Rocket Booster to Ramjet Sustainer

A comprehensive numerical analysis was conducted to study the internal flow development in an integrated rocket-ramjet (IRR) propulsion system. The study consists of two parts: transition from the rocket booster to the ramjet sustainer and combustion dynamics during ramjet operation. The physical model of concern includes the entire IRR flow path, extending from the leading edge of the inlet ce...

متن کامل

A Numerical Study on Mixing of Transverse Injection in Supersonic Combustor

A numerical study on mixing of hydrogen injected transversely into a supersonic air stream has been performed by solving Two-Dimensional full Navier-Stokes equations. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. The main objectives of this...

متن کامل

Large eddy simulation of spark ignition in a turbulent methane jet

Large Eddy Simulation (LES) is used to compute the spark ignition in a turbulent methane jet flowing into air. Full ignition sequences are calculated for a series of ignition locations using a one-step chemical scheme for methane combustion coupled with the thickened flame model. The spark ignition is modeled in the LES as an energy deposition term added to the energy equation. Flame kernel for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014